問題
次の計算をしなさい。また, 仮分数はそのままでよい。
解説
- (1)$\dfrac{3}{4}\div\dfrac{5}{7}+6-\dfrac{3}{10}$
- $\dfrac{3}{4}\times\dfrac{5}{7}+6-\dfrac{3}{10}$
$=\dfrac{21}{20}+\dfrac{60-3}{60}$
$=$$\dfrac{23}{4}$
- $\dfrac{3}{4}\times\dfrac{5}{7}+6-\dfrac{3}{10}$
- (2) $\dfrac{3}{2}+\dfrac{1}{6}+\dfrac{3}{14}+\dfrac{5}{21}+\dfrac{4}{9}$
- $\bigg(\dfrac{3}{2}+\dfrac{1}{6}\bigg)+\dfrac{3}{14}+\dfrac{5}{21}+\dfrac{4}{9}$
$=\bigg(\dfrac{19}{9}+\dfrac{4}{9}\bigg)+\bigg(\dfrac{3}{14}+\dfrac{5}{21}\bigg)$
$=\dfrac{19}{9}+\dfrac{19}{42}$
$=\dfrac{19\times14+19\times3}{126}$
$=$$\dfrac{323}{126}$
- $\bigg(\dfrac{3}{2}+\dfrac{1}{6}\bigg)+\dfrac{3}{14}+\dfrac{5}{21}+\dfrac{4}{9}$
- (3) $0.3\div\dfrac{52}{21}\times\dfrac{22}{7}\div0.375$
- $\dfrac{3}{10}\times\dfrac{21}{52}\times\dfrac{22}{7}\times\dfrac{8}{3}$
$=$$\dfrac{66}{65}$
- $\dfrac{3}{10}\times\dfrac{21}{52}\times\dfrac{22}{7}\times\dfrac{8}{3}$
- (4) $6.7\times107+3+107\times5.3$
- $107\times(6.7+5.3)+3$
$=$$1284$
- $107\times(6.7+5.3)+3$