問題
次の計算をしなさい。
解説
- $(1)\quad 80-\bigg\lbrace\bigg(3-\dfrac{11}{7}\bigg)\times7-4\bigg\rbrace\times2$
- $80-\bigg(\dfrac{10}{7}\times7-4\bigg)\times2$
$=80-6\times2$
$=$$68$
- $80-\bigg(\dfrac{10}{7}\times7-4\bigg)\times2$
- $(2)\quad 0.75\times\dfrac{8}{9}\times0.12\div\dfrac{1}{50}$
- $\dfrac{3}{4}\times\dfrac{8}{9}\times\dfrac{3}{25}\times50$
$=$$4$
- $\dfrac{3}{4}\times\dfrac{8}{9}\times\dfrac{3}{25}\times50$
- $(3)\quad (3.7+8.4-5.6)\times\bigg(\dfrac{4}{13}-\dfrac{3}{26}\bigg)$
- $6.5\times\dfrac{5}{26}$
$=\dfrac{13}{2}\times\dfrac{5}{26}$
$=$$1\dfrac{1}{4}$
- $6.5\times\dfrac{5}{26}$
- $(4)\quad \dfrac{1}{5\times6}+\dfrac{1}{6\times7}+\dfrac{1}{7\times8}+\dfrac{1}{8\times9}+\dfrac{1}{9\times10}$
- $\dfrac{1}{n\times(n+1)}=\dfrac{1}{n}-\dfrac{1}{n+1}$を用いると,
$\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{10}$
$=\dfrac{1}{5}-\dfrac{1}{10}$
$=$$\dfrac{1}{10}$
- $\dfrac{1}{n\times(n+1)}=\dfrac{1}{n}-\dfrac{1}{n+1}$を用いると,