【高校数学I】数と式を完全攻略~基本から応用までを徹底解説します!~実数-問題59

問題

$x=\sqrt{2}-1$ のとき, 次の式の値を求めよ.

解説

  • (1) $x+\dfrac{1}{x}$
    • $\dfrac{1}{x}=\dfrac{1}{\sqrt{2}-1}=\sqrt{2}+1$ より,
      $x+\dfrac{1}{x}=$$2\sqrt{2}$
  • (2) $x^{2}+\dfrac{1}{x^{2}}$
    • $=\bigg(x+\dfrac{1}{x}\bigg)^{2}-2=(2\sqrt{2})^{2}-2=$$6$
  • (3) $x^{3}+\dfrac{1}{x^{3}}$
    • $=\bigg(x+\dfrac{1}{x}\bigg)^{3}-3\!\left(x+\dfrac{1}{x}\right)
      =(2\sqrt{2})^{3}-3(2\sqrt{2})=$$10\sqrt{2}$
  • (4) $x^{4}+\dfrac{1}{x^{4}}$
    • $\left(x^{2}+\dfrac{1}{x^{2}}\right)^{2}-2=6^{2}-2=$$34$
  • (5) $x^{5}+\dfrac{1}{x^{5}}$
    • $\bigg(x+\dfrac{1}{x}\bigg)^5-5\bigg(x+\dfrac{1}{x}\bigg)^3+5\bigg(x+\dfrac{1}{x}\bigg)$
      $=(2\sqrt{2})^5-5(2\sqrt{2})^3+5(2\sqrt{2})=$$58\sqrt{2}$
タイトルとURLをコピーしました