問題
次の式を計算せよ.
解説
- (1) $\left(1+\sqrt{2}-\sqrt{3}\right)^{2}$
- $=1+2+3+2\sqrt{2}-2\sqrt{3}-2\sqrt{6}$
$=$$6+2\sqrt{2}-2\sqrt{3}-2\sqrt{6}$
- $=1+2+3+2\sqrt{2}-2\sqrt{3}-2\sqrt{6}$
- (2) $\left(3-\sqrt{2}-\sqrt{11}\right)\left(3-\sqrt{2}+\sqrt{11}\right)$
- $(a-b-c)(a-b+c)=(a-b)^{2}-c^{2}$ を用いると,
$(3-\sqrt{2})^{2}-11$
$=9-6\sqrt{2}+2-11$
$=$$-6\sqrt{2}$
- $(a-b-c)(a-b+c)=(a-b)^{2}-c^{2}$ を用いると,
