問題
次の式を計算せよ.
解説
- (1) $3\sqrt{3}+\sqrt{75}-\sqrt{48}$
- $=3\sqrt{3}+5\sqrt{3}-4\sqrt{3}=$$4\sqrt{3}$
- (2) $\sqrt{3}\,(2\sqrt{3}-\sqrt{6})$
- $=2\cdot3-\sqrt{18}=$$6-3\sqrt{2}$
- (3) $(\sqrt{5}-\sqrt{3})(\sqrt{5}+\sqrt{3})$
- $=5-3=$$2$
- (4) $(\sqrt{20}+\sqrt{3})(\sqrt{5}-\sqrt{27})$
- $=(2\sqrt{5}+\sqrt{3})(\sqrt{5}-3\sqrt{3})$
$=10-6\sqrt{15}+\sqrt{15}-9=$$1-5\sqrt{15}$
- $=(2\sqrt{5}+\sqrt{3})(\sqrt{5}-3\sqrt{3})$
- (5) $(\sqrt{3}+\sqrt{5})^{2}$
- $=3+2\sqrt{15}+5=$$8+2\sqrt{15}$
- (6) $(2\sqrt{3}-3\sqrt{2})^{2}$
- $=12-12\sqrt{6}+18=$$30-12\sqrt{6}$
