【高校数学I】数と式を完全攻略~基本から応用までを徹底解説します!~実数-問題63

問題

次の式を計算せよ.

解説

  • (1) $\dfrac{1}{1+\sqrt{2}-\sqrt{3}}$
    • $1^{2}+(\sqrt{2})^{2}=(\sqrt{3})^{2}$ を用いると,
      $\dfrac{1}{1+\sqrt{2}-\sqrt{3}}
      =\dfrac{1+\sqrt{2}+\sqrt{3}}{(1+\sqrt{2})^{2}-(\sqrt{3})^{2}}
      =\dfrac{1+\sqrt{2}+\sqrt{3}}{2\sqrt{2}}$
      $=\dfrac{\sqrt{2}+2+\sqrt{6}}{4}
      =$$\dfrac{2+\sqrt{2}+\sqrt{6}}{4}$
  • (2) $\dfrac{\sqrt{5}+\sqrt{3}+\sqrt{2}}{\sqrt{5}+\sqrt{3}-\sqrt{2}}$
    • $(\sqrt{5})^{2}=(\sqrt{3})^{2}+(\sqrt{2})^{2}$ を用いると,
      $\dfrac{\sqrt{5}+\sqrt{3}+\sqrt{2}}{\sqrt{5}+\sqrt{3}-\sqrt{2}}
      =\dfrac{(\sqrt{5}+\sqrt{3}+\sqrt{2})(\sqrt{5}-\sqrt{3}-\sqrt{2})}
      {(\sqrt{5}+\sqrt{3}-\sqrt{2})(\sqrt{5}-\sqrt{3}-\sqrt{2})}$
      分子 $=\sqrt{5}^{2}-(\sqrt{3}+\sqrt{2})^{2}=-2\sqrt{6}$
      分母 $=(\sqrt{5}+\sqrt{3})^{2}-(\sqrt{2})^{2}=6+2\sqrt{15}$
      より,
      $\dfrac{-2\sqrt{6}}{6+2\sqrt{15}}
      =\dfrac{-\sqrt{6}}{3+\sqrt{15}}
      =\dfrac{-\sqrt{6}(3-\sqrt{15})}{(3+\sqrt{15})(3-\sqrt{15})}
      =\dfrac{-\sqrt{6}(3-\sqrt{15})}{-6}$
      $=\dfrac{\sqrt{6}(3-\sqrt{15})}{6}
      =$$\dfrac{\sqrt{6}+\sqrt{15}}{3}$
  • (3) $\dfrac{\sqrt{2}+\sqrt{5}+\sqrt{7}}{\sqrt{2}+\sqrt{5}-\sqrt{7}}
    +\dfrac{\sqrt{2}-\sqrt{5}+\sqrt{7}}{\sqrt{2}-\sqrt{5}-\sqrt{7}}$

    • $(\sqrt{2})^{2}+(\sqrt{5})^{2}=(\sqrt{7})^{2}$を用いると,
      $\dfrac{(\sqrt{2}+\sqrt{5}+\sqrt{7})^{2}}{2\sqrt{10}}
      +\dfrac{(\sqrt{2}-\sqrt{5}+\sqrt{7})^{2}}{-2\sqrt{10}}$
      $=\dfrac{2\cdot7+2\sqrt{10}+2\sqrt{14}}{2\sqrt{10}}
      -\dfrac{2\cdot7-2\sqrt{10}+2\sqrt{14}}{2\sqrt{10}}
      =\dfrac{4\sqrt{10}+2\sqrt{14}}{2\sqrt{10}}$
      $=2+\dfrac{\sqrt{14}}{\sqrt{10}}\cdot\sqrt{10}=$$2+\sqrt{14}$
タイトルとURLをコピーしました