問題
次の式を計算せよ.
解説
- (1) $\dfrac{1}{1+\sqrt{2}-\sqrt{3}}$
- $1^{2}+(\sqrt{2})^{2}=(\sqrt{3})^{2}$ を用いると,
$\dfrac{1}{1+\sqrt{2}-\sqrt{3}}
=\dfrac{1+\sqrt{2}+\sqrt{3}}{(1+\sqrt{2})^{2}-(\sqrt{3})^{2}}
=\dfrac{1+\sqrt{2}+\sqrt{3}}{2\sqrt{2}}$
$=\dfrac{\sqrt{2}+2+\sqrt{6}}{4}
=$$\dfrac{2+\sqrt{2}+\sqrt{6}}{4}$
- $1^{2}+(\sqrt{2})^{2}=(\sqrt{3})^{2}$ を用いると,
- (2) $\dfrac{\sqrt{5}+\sqrt{3}+\sqrt{2}}{\sqrt{5}+\sqrt{3}-\sqrt{2}}$
- $(\sqrt{5})^{2}=(\sqrt{3})^{2}+(\sqrt{2})^{2}$ を用いると,
$\dfrac{\sqrt{5}+\sqrt{3}+\sqrt{2}}{\sqrt{5}+\sqrt{3}-\sqrt{2}}
=\dfrac{(\sqrt{5}+\sqrt{3}+\sqrt{2})(\sqrt{5}-\sqrt{3}-\sqrt{2})}
{(\sqrt{5}+\sqrt{3}-\sqrt{2})(\sqrt{5}-\sqrt{3}-\sqrt{2})}$
分子 $=\sqrt{5}^{2}-(\sqrt{3}+\sqrt{2})^{2}=-2\sqrt{6}$
分母 $=(\sqrt{5}+\sqrt{3})^{2}-(\sqrt{2})^{2}=6+2\sqrt{15}$
より,
$\dfrac{-2\sqrt{6}}{6+2\sqrt{15}}
=\dfrac{-\sqrt{6}}{3+\sqrt{15}}
=\dfrac{-\sqrt{6}(3-\sqrt{15})}{(3+\sqrt{15})(3-\sqrt{15})}
=\dfrac{-\sqrt{6}(3-\sqrt{15})}{-6}$
$=\dfrac{\sqrt{6}(3-\sqrt{15})}{6}
=$$\dfrac{\sqrt{6}+\sqrt{15}}{3}$
- $(\sqrt{5})^{2}=(\sqrt{3})^{2}+(\sqrt{2})^{2}$ を用いると,
- (3) $\dfrac{\sqrt{2}+\sqrt{5}+\sqrt{7}}{\sqrt{2}+\sqrt{5}-\sqrt{7}}
+\dfrac{\sqrt{2}-\sqrt{5}+\sqrt{7}}{\sqrt{2}-\sqrt{5}-\sqrt{7}}$- $(\sqrt{2})^{2}+(\sqrt{5})^{2}=(\sqrt{7})^{2}$を用いると,
$\dfrac{(\sqrt{2}+\sqrt{5}+\sqrt{7})^{2}}{2\sqrt{10}}
+\dfrac{(\sqrt{2}-\sqrt{5}+\sqrt{7})^{2}}{-2\sqrt{10}}$
$=\dfrac{2\cdot7+2\sqrt{10}+2\sqrt{14}}{2\sqrt{10}}
-\dfrac{2\cdot7-2\sqrt{10}+2\sqrt{14}}{2\sqrt{10}}
=\dfrac{4\sqrt{10}+2\sqrt{14}}{2\sqrt{10}}$
$=2+\dfrac{\sqrt{14}}{\sqrt{10}}\cdot\sqrt{10}=$$2+\sqrt{14}$
- $(\sqrt{2})^{2}+(\sqrt{5})^{2}=(\sqrt{7})^{2}$を用いると,
