問題
次の式を展開せよ.
解説
- (1) $(x^2 + xy + y^2)(x^2 – xy + y^2)(x^4 – x^2y^2 + y^4)$
- $=\{(x^2+y^2)+xy\}\{(x^2+y^2)-xy\}(x^4 – x^2y^2 + y^4)$
$=\{(x^2+y^2)^2-x^2y^2\}(x^4 – x^2y^2 + y^4)$
$=(x^4+2x^2y^2+y^4-x^2y^2)(x^4 – x^2y^2 + y^4)$
$=\{(x^4+y^4)+x^2y^2\}\{(x^4+y^4)-x^2y^2\}$
$=(x^4+y^4)^2-x^4y^4$
$=$$x^8+x^4y^4+y^8$
- $=\{(x^2+y^2)+xy\}\{(x^2+y^2)-xy\}(x^4 – x^2y^2 + y^4)$
- (2) $(x + y + 1)(x + y – 1)(x – y + 1)(x – y – 1)$
- $=\{(x+y)^2-1\}\{(x-y)^2-1\}$
$=(x^2+2xy+y^2-1)(x^2-2xy+y^2-1)$
$=(x^2+y^2-1)^2-4x^2y^2$
$=$$x^4-2x^2y^2+y^4-2x^2-2y^2+1$
- $=\{(x+y)^2-1\}\{(x-y)^2-1\}$