問題
次の式を展開せよ.
解説
- (1) $2x(2x^{2}-3xy-y^{2})$
- $2x(2x^{2}-3xy-y^{2})$
$=$$4x^{3}-6x^{2}y-2xy^{2}$
- $2x(2x^{2}-3xy-y^{2})$
- (2) $\bigg(\dfrac{a^{2}}{3}-\dfrac{ab}{6}-\dfrac{b^{2}}{4}\bigg)\times12b^{2}$
- $\bigg(\dfrac{a^{2}}{3}-\dfrac{ab}{6}-\dfrac{b^{2}}{4}\bigg)\times12b^{2}$
$=$$4a^{2}b^{2}-2ab^{3}-3b^{4}$
- $\bigg(\dfrac{a^{2}}{3}-\dfrac{ab}{6}-\dfrac{b^{2}}{4}\bigg)\times12b^{2}$
- (3) $(3x^{2}-4)(2x+5)$
- $(3x^{2}-4)(2x+5)=3x^{2}\cdot2x+3x^{2}\cdot5-4\cdot2x-4\cdot5$
$=$$6x^{3}+15x^{2}-8x-20$
- $(3x^{2}-4)(2x+5)=3x^{2}\cdot2x+3x^{2}\cdot5-4\cdot2x-4\cdot5$
- (4) $(x-1)(x^{2}+2x-3)$
- $(x-1)(x^{2}+2x-3)$
$=x\cdot x^{2}+x\cdot2x-x\cdot3-1\cdot x^{2}-1\cdot2x-1\cdot(-3)$
$=$$x^{3}+x^{2}-5x+3$
- $(x-1)(x^{2}+2x-3)$
- (5) $(x^{2}-2xy-y^{2})(x-3y)$
- $(x^{2}-2xy-y^{2})(x-3y)$
$=x^{2}\cdot x-x^{2}\cdot3y-2xy\cdot x-2xy\cdot(-3y)-y^{2}\cdot x-y^{2}\cdot(-3y)$
$=$$x^{3}-5x^{2}y+5xy^{2}+3y^{3}$
- $(x^{2}-2xy-y^{2})(x-3y)$
- (6) $(3a-4b+2c)(a+2b-5c)$
- $(3a-4b+2c)(a+2b-5c)$
$=3a\cdot a+3a\cdot2b-3a\cdot5c-4b\cdot a-4b\cdot2b-4b\cdot(-5c)+2c\cdot a+2c\cdot2b-2c\cdot5c$
$=$$3a^{2}-8b^{2}-10c^{2}+2ab+24bc-13ca$
- $(3a-4b+2c)(a+2b-5c)$